Extensions 1→N→G→Q→1 with N=C22xC6 and Q=C18

Direct product G=NxQ with N=C22xC6 and Q=C18
dρLabelID
C22xC6xC18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C22xC6 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C22xC6):C18 = C2xS3xC3.A4φ: C18/C3C6 ⊆ Aut C22xC6366(C2^2xC6):C18432,541
(C22xC6):2C18 = C2xC6xC3.A4φ: C18/C6C3 ⊆ Aut C22xC6108(C2^2xC6):2C18432,548
(C22xC6):3C18 = D4xC3xC18φ: C18/C9C2 ⊆ Aut C22xC6216(C2^2xC6):3C18432,403
(C22xC6):4C18 = C18xC3:D4φ: C18/C9C2 ⊆ Aut C22xC672(C2^2xC6):4C18432,375
(C22xC6):5C18 = S3xC22xC18φ: C18/C9C2 ⊆ Aut C22xC6144(C2^2xC6):5C18432,557

Non-split extensions G=N.Q with N=C22xC6 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C22xC6).C18 = Dic3xC3.A4φ: C18/C3C6 ⊆ Aut C22xC6366(C2^2xC6).C18432,271
(C22xC6).2C18 = C4xC9.A4φ: C18/C6C3 ⊆ Aut C22xC61083(C2^2xC6).2C18432,40
(C22xC6).3C18 = C22xC9.A4φ: C18/C6C3 ⊆ Aut C22xC6108(C2^2xC6).3C18432,225
(C22xC6).4C18 = C12xC3.A4φ: C18/C6C3 ⊆ Aut C22xC6108(C2^2xC6).4C18432,331
(C22xC6).5C18 = C22:C4xC27φ: C18/C9C2 ⊆ Aut C22xC6216(C2^2xC6).5C18432,21
(C22xC6).6C18 = D4xC54φ: C18/C9C2 ⊆ Aut C22xC6216(C2^2xC6).6C18432,54
(C22xC6).7C18 = C22:C4xC3xC9φ: C18/C9C2 ⊆ Aut C22xC6216(C2^2xC6).7C18432,203
(C22xC6).8C18 = C9xC6.D4φ: C18/C9C2 ⊆ Aut C22xC672(C2^2xC6).8C18432,165
(C22xC6).9C18 = Dic3xC2xC18φ: C18/C9C2 ⊆ Aut C22xC6144(C2^2xC6).9C18432,373

׿
x
:
Z
F
o
wr
Q
<